| 1. | The global stability of the positive equilibrium for an epidemic model 被捕食传染病模型的全局稳定性分析 |
| 2. | Global stability of positive equilibrium solution in a three species cooperating model 一类三物种互助模型正平衡解的全局稳定性 |
| 3. | This model has an unique positive equilibrium which is globally stable 当产品寿命较长时,该模型具有一个全局稳定的正平衡点。 |
| 4. | The global stability of the positive equilibrium for a class of reciprocally interfered predator - prey system 被捕食系统的正平衡点的全局稳定性 |
| 5. | We rst use three different methods to analyze the global stability of the unique positive equilibrium point of the system without time delay 首先,我们利用三种不同方法分析不具时滞参数之竞争系统的整体稳定性。 |
| 6. | The bogdanov - takens bifurcation is studied when there is a unique degenerate positive equilibrium . lastly , we make a numerical analysis 对退化的唯一正平衡点进行研究,得到了bogdanov - takens分支,分支出同宿圈。 |
| 7. | Furthermore , model with three products , under the condition of equally probable contact , has globally stable positive equilibrium 在使用者和非使用者等可能接触的前提下,证明了三个产品的非线性接触模型有一个全局稳定的正平衡点。 |
| 8. | By the analysis of the first part , the domain of catching efforts which keep the system enduring and having a unique positive equilibrium that was globally asymptotically stable had been given 通过前一部分的分析,已给出了使系统持续发展而且恰有唯一一个全局渐近稳定的正平衡点的捕获努力量的范围 |
| 9. | First , model for two products with nonlinear contact is considered . by using monotonicity and poincare - bendixson theory , the global stability of the unique positive equilibrium is proved 首先考虑了两个产品的非线性接触模型,利用单调性和poincar - bendixson定理,我们证明了唯一正平衡点是全局稳定性的。 |
| 10. | Lastly , distributed time delays , with adopter rejection , are introduced to the model for three products . liapunov functional is constructed to find the sufficient condition of the positive equilibrium 最后,我们在模型中对使用者离开使用类的速率引进分布时滞,通过构造liapunov泛函,得出正平衡点全局稳定的充分条件。 |